24历史笔记 首页 朝代人物元朝人物名人 朱世杰

朱世杰

朱世杰个人介绍资料


中文名:朱世杰

别名:字汉卿,号松庭

国籍:元

民族:汉族

出生日期:1249年

逝世日期:1314年

职业:数学家

主要成就:创造“四元术”,创造“垛积法”与“招差术”

出生地:燕山(今北京)

信仰:科学

代表作品:《算学启蒙》和《四元玉鉴》

所处朝代:元朝

历史时期:元朝人物名人录

朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有中世纪世界最伟大的数学家之誉。

朱世杰在当时天元术的基础上发展出四元术,也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出垛积法,即高阶等差数列的求和方法,与招差术,即高次内插法。

主要著作是《算学启蒙》与《四元玉鉴》 。

人物生平


朱世杰以数学名家周游湖海二十余年,踵门而学者云集(莫若、祖颐:《四元玉鉴》后序)。

宋元时期,中国数学鼎盛时期中杰出的数学家有秦﹝九韶﹞、李﹝冶﹞、杨﹝辉﹞、朱﹝世杰﹞四大家,朱世杰就是其中之一。朱世杰是一位平民数学家和数学教育家。朱世杰平生勤力研习《九章算术》,旁通其它各种算法,成为元代著名数学家。

生平经历

元统一中国后,朱世杰曾以数学家的身份周游各地20余年,向他求学的人很多,他到广陵(今扬州)时踵门而学者云集。他全面继承了前人数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术、各种日用算法及通俗歌诀,在此基础上进行了创造性的研究,写成以总结和普及当时各种数学知识为宗旨的《算学启蒙》(3卷),又写成四元术的代表作--《四元玉鉴》(3卷),先后于:1299年和1303年刊印.《算学启蒙》由浅入深,从一位数乘法开始,一直讲到当时的最新数学成果――天元术,俨然形成一个完整体系。

书中明确提出正负数乘法法则,给出倒数的概念和基本性质,概括出若干新的乘法公式和根式运算法则,总结了若干乘除捷算口诀,并把设辅助未知数的方法用于解线性方程组.《四元玉鉴》的主要内容是四元术,即多元高次方程组的建立和求解方法.秦九韶的高次方程数值解法和李冶的天元术都被包含在内.

在宋元时期的数学群英中,朱世杰的工作具有特殊重要的意义.如果把诸多数学家比作群山,则朱世杰是最高大、最雄伟的山峰.站在朱世杰数学思想的高度俯瞰传统数学,会有"一览众山小"之感.朱世杰工作的意义就在于总结了宋元数学,使之在理论上达到新的高度.这主要表现在以下三个领域.首先是方程理论.在列方程方面,蒋周的演段法为天元术作了准备工作,他已具有寻找等值多项式的思想,洞渊马与信道是天元术的先驱,但他们推导方程仍受几何思维的束缚,李冶基本上摆脱了这种束缚,总结出一套固定的天元术程序,使天元术进入成熟阶段.在解方程方面,贾宪给出增乘开方法,刘益则用正负开方术求出四次方程正根,秦九韶在此基础上解决了高次方程的数值解法问题.至此,一元高次方程的建立和求解都已实现.而线性方程组古已有之,所以具备了多元高次方程组产生的条件.李德载的二元术和刘大鉴的三元术相继出现,朱世杰的四元术正是对二元术、三元术的总结与提高.由于四元已把常数项的上下左右占满,方程理论发展到这里,显然就告一段落了.从方程种类看,天元术产生之前的方程都是整式方程。

从洞渊到李冶,分式方程逐渐得到发展.而朱世杰,则突破了有理式的限制,开始处理无理方程.其次是高阶等差级数的研究.沈括的隙积术开研究高阶等差级数之先河,杨辉给出包括隙积术在内的一系列二阶等差级数求和公式.朱世杰则在此基础上依次研究了二阶、三阶、四阶乃至五阶等差级数的求和问题,从而发现其规律,掌握了三角垛统一公式.他还发现了垛积术与内插法的内在联系,利用垛积公式给出规范的四次内插公式.第三是几何学的研究.宋代以前,几何研究离不开勾股和面积、体积.蒋周的《益古集》也是以面积问题为研究对象的.李冶开始注意到圆城因式中各元素的关系,得到一些定理,但未能推广到更一般的情形.朱世杰不仅总结了前人的勾股及求积理论,而且在李冶思想的基础上更进一步,深入研究了勾股形内及圆内各几何元素的数量关系,发现了两个重要定理--射影定理和弦幂定理.他在立体几何中也开始注意到图形内各元素的关系.朱世杰的工作,使得几何研究的对象由图形整体深入到图形内部,体现了数学思想的进步。

著名轶闻


13世纪末,历经战乱的祖国为元王朝所统一,遭到破坏的经济和文化又很快繁荣起来。蒙古统治者为了兴邦安国,便尊重知识,选拔人才,把各门科学推向新的高峰。有一天,风景秀丽的扬州瘦西湖畔,来了一位教书先生,在寓所门前挂起一块招牌,上面用大字写着:燕山朱松庭先生,专门教授四元术。不几天,朱世杰门前门庭若市,求知者络绎不绝,就在朱世杰在接待学生报名之时,突然一声声叫骂声引起他的注意。只见一穿绸戴银半老徐娘,追着一年轻的姑娘,边打边骂:你这贱女人,大把的银子你不抓,难道想做大家闺秀,只怕你投错了胎,下辈子也别想了。那姑娘被打得皮开肉绽,连内身衣服都被撕坏了。姑娘蜷成一团,任凭她打,也不跟她回去。朱世杰路见不平,便上前询问,那半老徐娘见冒出一个爱管闲事之人,就嘲笑道:你难道想抱打不平,你送上50两银子,这姑娘就归你了!朱世杰见此情景,大怒道:难道我掏不出50两银子。光天化日之下,竟胡作非为,难道没有王法不成?那半老徐娘讽刺道:你这穷鬼,还谈什么王法,银子就是王法,你若能掏出50两银子,我便不打了。

朱世杰愤怒已极,从口袋里抓出50两银子,摔在半老徐娘面前,拉起姑娘就回到自己的教书之地。原来,那半老徐娘是妓女院的鸨母,而这姑娘的父亲因借鸨母的10两银子,由于天灾,还不起银子,只好卖女儿抵债。今天碰巧遇上朱世杰,才把姑娘救出苦海。后来,在朱世杰的精心教导下,这姑娘也颇懂些数学知识,成了朱世杰的得力助手,不几年,两人便结成夫妻。所以,扬州民间至今还流传着这样一句话:元朝朱汉卿,教书又育人。救人出苦海,婚姻大事成。

朱世杰历史评价


燕山朱松庭先生,是元朝时代的一位杰出的数学家。所写的《四元玉鉴》和《算学启蒙》,是中国古代数学发展进程中的一个重要的里程碑,是中国古代数学的一份宝贵的遗产。13世纪中叶,朱世杰除了接受北方的数学成就之外,他也吸收了南方的数学成就,尤其是各种日用算法、商用算术和通俗化的歌诀等等。

朱世杰曾周游四方,莫若(古代数学家)序中有燕山松庭朱先生以数学名家周游湖海二十余年矣。四方之来学者日众,先生遂发明《九章》之妙,以淑后图学,为书三卷……名曰《四元玉鉴》,祖颐后序中亦有汉卿名世杰,松庭其自号也。周流四方,复游广陵,踵门而学者云集。经过长期的游学、讲学等活动,终于在1299年和1303年,在扬州,刊刻了他的两部数学杰作——《算学启蒙》和《四元玉鉴》。杨辉书中的归除歌诀在朱世杰所著《算学启蒙》中有了进一步的发展。

清罗士琳认为:汉卿在宋元间,与秦道古(即秦九韶)、李仁卿可称鼎足而三。道古正负开方,汉卿天元如积皆足上下千古,汉卿又兼包众有,充类尽量,神而明之,尤超越乎秦、李之上。清代数学家王鉴也说:朱松庭先生兼秦、李之所长,成一家之著作。朱世杰全面继承了并创造性地发扬了天元术、正负开方法等秦、李书中所载的数学成就之外,还囊括了杨辉书中的日用、商用、归除歌诀之类与当时社会生活密切相关的各种算法,并作了新的发展。

朱世杰扬州轶事


据此我们知道,朱世杰出生在北京地区,十三世纪后期,他作为数学名家周游大江南北20余年,朱世杰最后寓居扬州,从事数学的研究和讲学,他吸引了众多学者聚集在扬州从事学术交流。扬州处于南北交汇之地,各种学术思想在这里融会贯通;当时,扬州的印刷业又十分发达,是全国的书籍出版中心,体现朱世杰数学成就的两部著作《算学启蒙》和《四元玉鉴》,就是于元大德三年(1299年)和元大德七年(1303年)在扬州刻印出版的。

《算学启蒙》全书共3卷,分为20门,收入了259个数学问题。全书之首,朱世杰给出了18条常用的数学歌诀和各种常用的数学常数,其中包括:乘法九九歌诀、除法九归歌诀(与后来的珠算归除口诀完全相同)、斤两化零歌诀,以及筹算记数法则、大小数进位法、度量衡换算、圆周率、正负数加、减、乘法法则、开方法则等。正文则包括了乘除法运算及其捷算法、增乘开方法、天元术、线性方程组解法、高阶等差级数求和等,全书由浅入深,几乎包括了当时数学学科各方面的内容,形成了一个较完整的体系,可以说是一部很好的数学教科书。清代扬州学者罗士琳说,《算学启蒙》似浅实深,这样的评论是十分中肯的。

《四元玉鉴》是朱世杰阐述多年研究成果的一部力著。全书共分3卷,24门,288问,书中所有问题都与求解方程或求解方程组有关,其中四元的问题(需设立四个未知数者)有7问,三元者13问,二元者36问,一元者232问。卷首列出了贾宪三角等四种五幅图,给出了天元术、二元术、三元术、四元术的解法范例;后三者分别是二元、三元、四元高次方程组的列法及解法。创造四元消法,解决多元高次方程组问题是该书的最大贡献,书中另一个重大成就是系统解决高阶等差级数求和问题和高次招差法问题。

在朱世杰之前,中国古代数学已有了解方程的方法———天元术,天元术解方程是设天元为某某,某某就是(x)。朱世杰不仅继承沿用了天元术,方程组解法由二元、三元推广至四元。未知数不止一个时,除设未知数天元(x)外,还设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联立方程组,然后求解。在欧洲,解联立一次方程始于16世纪,关于多元高次联立方程的研究则是18、19世纪的事了,朱世杰的天元术比欧洲早了400多年。

朱世杰对垛积术的研究,实际上得到了高阶等差级数求和问题的普遍的解法。自宋代起我国就有了关于高阶等差级数求和问题的研究,沈括(1031-1095年)和杨辉(1261-1275年)的著作中,都有垛积问题,这些垛积问题有一些就涉及高阶等差级数,朱世杰在《四元玉鉴》中又把这一问题的研究进一步深化,得到了一串三角垛的公式。

《四元玉鉴》是一部成就辉煌的数学名著,是宋元数学集大成者,也是我国古代水平最高的一部数学著作。现代数学史研究者对《四元玉鉴》给予了高度评价。著名科学史专家乔治萨顿说,《四元玉鉴》是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。编著《中国科学技术史》的李约瑟这样评价朱世杰和《四元玉鉴》:他以前的数学家都未能达到这部精深的著作中所包含的奥妙的道理。

遗憾的是,朱世杰之后,元代再无高深的数学著作出现,汉唐宋元的数学著作很少有新的刻本,很多甚至失传了。乾隆三十七年(1772年)开《四库全书》馆时,挖掘了不少古代数学典籍,朱世杰的著作却未被发现,因此,起初没有编入;1799年阮元、李锐等人编纂数学家传记《畴人传》时,也未介绍《四元玉鉴》。之后不久,阮元在浙江访得此书,旋即将其编入《四库全书》,并把抄本交给李锐校算(未校完),后由何元锡按此抄本刻印,这是《四元玉鉴》1303年初版以来的第一个重刻本。1839年扬州学者罗士琳经多年研究之后,出版了他所编著的《四元玉鉴细草》,罗氏对《四元玉鉴》书中每一问题都作了细草。就在罗士琳翻刻《四元玉鉴》时,《算学启蒙》也还无着落。后来罗士琳闻朝鲜以是书为算科取士,于是请人在北京找到了顺治十七年(1660年)朝鲜全州府尹金始振所刻的翻刻本,这样,《算学启蒙》又在扬州重新刊印出版,这就是该书现存各种版本的母本。

元代朱世杰这两部杰出的数学著作都是在扬州完成、刻印的,失传了几百年后,它们又被扬州学者发现、校算、注释,并在扬州重新刻印出版,仅此可见,扬州在我国数学发展史上有着十分重要的地位。

人物相关著述


朱世杰长期从事数学研究和教育事业,以数学名家周游各地20多年,四方登门来学习的人很多。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有四元术(多元高次方程列式与消元解法)、垛积法(高阶等差数列求和)与招差术(高次内插法)。

朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向更高的境界,形成宋元时期中国数学的最高峰。《算学启蒙》是朱世杰在元成宗大德三年(1299)刊印的,全书共三卷,20门,总计259个问题和相应的解答。这部书从乘除运算起,一直讲到当时数学发展的最高成就天元术,全面介绍了当时数学所包含的各方面内容。

它的体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜、日本等国,出版过翻刻本和注释本,产生过一定的影响。而《四元玉鉴》更是一部成就辉煌的数学名著。它受到近代数学史研究者的高度评价,认为是中国古代数学科学著作中最重要的、最有贡献的一部数学名著。《四元玉鉴》成书于大德七年(1303),共三卷,24门,288问,介绍了朱世杰在多元高次方程组的解法——四元术,以及高阶等差级数的计算——垛积术、招差术等方面的研究和成果。

天元术是设天元为某某,即某某为x。但当未知数不止一个的时候,除设未知数天元(x)外,还需设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联方程组,然后求解。这在欧洲,解联立一次方程开始于16世纪,关于多元高次联立方程的研究还是18至19世纪的事了。朱世杰的另一重大贡献是对于垛积术的研究。他对于一系列新的垛形的级数求和问题作了研究,从中归纳为三角垛的公式,实际上得到了这一类任意高阶等差级数求和问题的系统、普遍的解法。朱世杰还把三角垛公式引用到招差术中,指出招差公式中的系数恰好依次是各三角垛的积,这样就得到了包含有四次差的招差公式。

他还把这个招差公式推广为包含任意高次差的招差公式,这在世界数学史上是第一次,比欧洲牛顿的同样成就要早近4个世纪。正因为如此,朱世杰和他的著作《四元玉鉴》才享有巨大的国际声誉。近代日本、法国、美国、比利时以及亚、欧、美许多国家都有人向本国介绍《四元玉鉴》。美国已故的著名的科学史家萨顿是这样评说朱世杰的:(朱世杰)是中华民族的、他所生活的时代的、同时也是贯穿古今的一位最杰出的数学科学家。《四元玉鉴》是中国数学著作中最重要的,同时也是中世纪最杰出的数学著作之一。它是世界数学宝库中不可多得的瑰宝。从此中可以看出,宋元时期的科学家及其著作,在世界数学史上起到了不可估量的作用。

朱世杰贡献


朱世杰的主要贡献是创造了一套完整的消未知数方法,称为四元消法.这种方法在世界上长期处于领先地位,直到18世纪,法国数学家贝祖(Bezout)提出一般的高次方程组解法,才超过朱世杰。除了四元术以外,《四元玉鉴》中还有两项重要成就,即创立了一般的高阶等差级数求和公式及等间距四次内插法公式,后者通常称为招差术.此书代表着宋元数学的最高水平,美国科学史家萨顿(G.Sarton)称赞它是中国数学著作中最重要的一部,同时也是中世纪的杰出数学著作之一。朱世杰处于中国传统数学发展的鼎盛时期,当时社会上尊崇算学,科目渐兴,数学著作广为传播。

对多元高次方程组解法、高阶等差级数求和,高次内插法都有深入研究,他著有《算学启蒙》(1299年)、《四元玉鉴》(1303年)各3卷,在后者中讨论了多达四元的高次联立方程组解法,联系在一起的多项式的表达和运算以及消去法,已接近近世代数学,处于世界领先地位,他通晓高次招差法公式,比西方早四百年,中外数学史家都高度评价朱世杰和他的名著《四元玉鉴》。

从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。《四元玉鉴》成书于1303年。全书共3卷,24门,288问,主要论述高次方程组的解法(这也是朱世杰的最大贡献)、高阶等差级数求和以及高次内插法等内容。是流传至今且对四元术进行系统论述的重要代表作。

在天元术的基础上,朱世杰建立了四元高次方程理论,他把常数项放在中央(即太),然后立天元一于下,地元一于左,人元一于右,物元一于上,天、地、人、物这四元代表未知数,(即相当于如今的x、y、z、w,)四元的各次幂放在上、下、左、右四个方向上,其它各项放在四个象限中。如果用现代的x、y、z、w表示天、地、人、物,那我们可以把朱世杰列高次多元方程的方法表示:而上面的两个图形四元一次筹式与四元二次筹式所表示的方程分别为:x+y+z+w=0,

用上述方法列出四元高次方程后,再联立方程组进行解方程组,方法是用消元方法解答,先择一元为未知数,其它元组成的多项式作为这未知数的系数,然后把四元四式消去一元,变成三元三式,再消去一元变二元二式,再消去一元,就得到只含一元的天元开方式,然后用增乘开方法求得正根。这是线性方法组解法的重大发展,在西方,较有系统地研究多元方程组要等到16世纪。高阶等差级数求和与高次内插法也是《四元玉鉴》的重要内容。由许多求和问题中的一系列三角垛公式可归纳得公式。朱世杰给出了上式中当p=1,2,……6时的公式。此外,还有其它高阶等差级数求和公式。在招差法方面,朱世杰相当于给出了招差公式,这比西方要早400多年。

美国著名的科学史家萨顿评论说:朱世杰是他所生存时代的,同时也是贯穿古今的一位最杰出的数学家,《四元玉鉴》是中国数学著作中最重要的一部,同时也是整个中世纪最杰出的数学著作之一。朱世杰不仅是一名杰出的数学家,他还是一位数学教育家,曾周游四方各地,教授生徒20余年。并亲自编著数学入门书,称为《算学启蒙》。在《算学启蒙》卷下中,朱世杰提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。

相关资料


在元灭南宋以前,南北之间的交往,特别是学术上的交往几乎是断绝的。南方的数学家对北方的天元术毫无所知,而北方的数学家也很少受到南方的影响。

由此看来,在朱世杰的工作中,不仅有高次方程的解法,天元术等为代表的北方数学的成就,也包括了杨辉工作中所体现出来的日用,商用算法以及各种歌诀等南方数学的成就,不仅继承了中国古代数学的光辉遗产,而且又作了创作性的发展。朱世杰的工作,在一定意义上讲,可以看作是宋元数学的代表,可以看作是古代筹算系统发展的顶峰。就连西方资产阶级学者们也不能否认这一点,乔治萨顿说:朱世杰是汉族的,他所生存的时代的,同时也是贯穿古今的一位最杰出的数学家,说《四元玉鉴》是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。朱世杰以他自己的杰出著作,把中国古代数学推向更高的境界,为中国古代数学的光辉史册,增加了新的篇章,形成了宋代中国数学发展的最高峰。

13
东光县名人录
扬州 宝应县名人录
河曲名人录
元朝归隐诗人
中世纪世界最伟大的数学家
元朝一代名儒
成都市 锦江区名人录
国务院原总理
凤阳名人录
东城区名人录
明朝第四位皇帝
明朝第六任、第八任皇帝
明朝第五位皇帝
十四届中央委员
港澳台侨委员会主任
茂名市 茂南区名人录
金螳螂集团创始人
中国明代农艺师、天文学家、数学家
东吴数学家
意大利数学家、物理学家、天文学家
著有《推背图》唐代杰出天文学家、数学家
中世纪世界最伟大的数学家
北宋数学家
南宋著名数学家
杰出的数学教育家_宋朝
东汉时期数学家、天文学家、算圣
南北朝时期杰出的数学家、天文学家
重庆市 大渡口区名人录
古代最伟大数学家之一

最新评论


免费八字算命 缘主八字测算 免费八字排盘
免费八字算命姓名:
免费八字算命性别:
免费八字算命生日:
出生时辰:
√ 在线测试
本站测算方面的内容皆来源于民俗文化和民间传说,完全免费分享给有缘人,仅供休闲娱乐,请勿迷信,要相信,我命由我不由天。

联系方式 免责声明

蜀ICP备2021030633号
返回顶部